Evaluating the Tensile Properties of Aluminum Foundry Alloys through Reference Castings—A Review

نویسندگان

  • A.R. Anilchandra
  • Lars Arnberg
  • Franco Bonollo
  • Elena Fiorese
  • Giulio Timelli
چکیده

The tensile properties of an alloy can be exploited if detrimental defects and imperfections of the casting are minimized and the microstructural characteristics are optimized through several strategies that involve die design, process management and metal treatments. This paper presents an analysis and comparison of the salient characteristics of the reference dies proposed in the literature, both in the field of pressure and gravity die-casting. The specimens produced with these reference dies, called separately poured specimens, are effective tools for the evaluation and comparison of the tensile and physical behaviors of Al-Si casting alloys. Some of the findings of the present paper have been recently developed in the frame of the European StaCast project whose results are complemented here with some more recent outcomes and a comprehensive analysis and discussion.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Surface characteristics and castability of Zr-14Nb alloy dental castings.

The purpose of this study was to evaluate mechanical properties, surface characteristics and castability of Zr-14Nb dental castings. The mean 0.2% proof and ultimate tensile strengths of Zr-14Nb were approximately 68% and 76% those of Ti-6Al-7Nb, respectively, while they were comparable to Co-29Cr-6Mo. Elongation of Zr-14Nb was the highest of all alloys tested. The hardened reaction layer was f...

متن کامل

Influence of Ultrasound Treatment on Cavitation Erosion Resistance of AlSi7 Alloy

Ultrasound treatment of liquid aluminum alloys is known to improve mechanical properties of castings. Aluminum foundry alloys are frequently used for production of parts that undergo severe cavitation erosion phenomena during service. In this paper, the effect of the ultrasound treatment on cavitation erosion resistance of AlSi7 alloy was assessed and compared to that of conventionally cast sam...

متن کامل

“ Microstructural and mechanical properties of eutectic Al – Si alloy with grain refined and modified using gravity - die and sand casting ”

This paper attempts to investigate the influence of the microstructure and mechanical property changes on sand casting and permanent die casting alloys by grain refinement, modification combined action of both (Al– 3Ti–1B + Al–10Sr) and without grain refinement and modification effect. The microstructures of the castings are studied by optical microscopes. The microstructure and mechanical prop...

متن کامل

Anomaly Detection for the Prediction of Ultimate Tensile Strength in Iron Casting Production

Mechanical properties are the attributes that measure the faculty of a metal to withstand several loads and tensions. In particular, ultimate tensile strength is the force a material can resist until it breaks. This property is one of the variables to control in the foundry process. The only way to examine this feature is to apply destructive inspections that make the casting invalid with the s...

متن کامل

Influence of Low-Frequency Vibration and Modification on Solidification and Mechanical Properties of Al-Si Casting Alloy

One of the major aims of the modern materials foundry industry is the achievement of advanced mechanical properties of metals, especially of light non-ferrous alloys such as aluminum. Usually an alloying process is applied to obtain the required properties of aluminum alloys. However, the presented work describes an alternative approach through the application of vibration treatment, modificati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2017